Remote Sensing (Nov 2021)
Protecting Existing Urban Green Space versus Cultivating More Green Infrastructures: Strategies Choices to Alleviate Urban Waterlogging Risks in Shenzhen
Abstract
For urban waterlogging alleviation, green infrastructures have been widely concerned. How to carry out scientific green infrastructure planning becomes an important issue in flood control and disaster relief. Based on historical media records of urban waterlogging from 2017 to 2020 and combined with variables about topography, land cover and socioeconomics, we used the Radial Basis Function Neural Network (RBFNN) to conduct urban waterlogging susceptibility assessment and simulate the risk of waterlogging in different scenarios of green land configuration in Shenzhen. The results showed that: (1) high proportions of impervious surface and population could increase the risks in Luohu and Futian districts, followed by Nanshan and Baoan districts, while high proportions of green space could effectively reduce the risks in southeastern Shenzhen; (2) urban waterlogging in Luohu and Futian districts can be alleviated by strengthening green infrastructure construction while Longgang and Longhua districts should make comprehensive use of other flood prevention methods; (3) turning existing urban green space into impervious surfaces would increase the risks of waterlogging, which is more evident in places with high proportions of green space such as Dapeng and Yantian districts. The effectiveness of green infrastructures varies in different spatial locations. Therefore, more attention should be paid to protecting existing green spaces than cultivating more green infrastructures in urban waterlogging alleviation.
Keywords