Scientific Reports (Dec 2021)
Increased resting state connectivity in the anterior default mode network of idiopathic epileptic dogs
Abstract
Abstract Epilepsy is one of the most common chronic, neurological diseases in humans and dogs and considered to be a network disease. In human epilepsy altered functional connectivity in different large-scale networks have been identified with functional resting state magnetic resonance imaging. Since large-scale resting state networks have been consistently identified in anesthetised dogs’ application of this technique became promising in canine epilepsy research. The aim of the present study was to investigate differences in large-scale resting state networks in epileptic dogs compared to healthy controls. Our hypothesis was, that large-scale networks differ between epileptic dogs and healthy control dogs. A group of 17 dogs (Border Collies and Greater Swiss Mountain Dogs) with idiopathic epilepsy was compared to 20 healthy control dogs under a standardized sevoflurane anaesthesia protocol. Group level independent component analysis with dimensionality of 20 components, dual regression and two-sample t test were performed and revealed significantly increased functional connectivity in the anterior default mode network of idiopathic epileptic dogs compared to healthy control dogs (p = 0.00060). This group level differences between epileptic dogs and healthy control dogs identified using a rather simple data driven approach could serve as a starting point for more advanced resting state network analysis in epileptic dogs.