Scientific Reports (Mar 2021)

Exploring the capability of mayenite (12CaO·7Al2O3) as hydrogen storage material

  • Heidy Visbal,
  • Takuya Omura,
  • Kohji Nagashima,
  • Takanori Itoh,
  • Tsukuru Ohwaki,
  • Hideto Imai,
  • Toru Ishigaki,
  • Ayaka Maeno,
  • Katsuaki Suzuki,
  • Hironori Kaji,
  • Kazuyuki Hirao

DOI
https://doi.org/10.1038/s41598-021-85540-8
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Abstract We utilized nanoporous mayenite (12CaO·7Al2O3), a cost-effective material, in the hydride state (H−) to explore the possibility of its use for hydrogen storage and transportation. Hydrogen desorption occurs by a simple reaction of mayenite with water, and the nanocage structure transforms into a calcium aluminate hydrate. This reaction enables easy desorption of H− ions trapped in the structure, which could allow the use of this material in future portable applications. Additionally, this material is 100% recyclable because the cage structure can be recovered by heat treatment after hydrogen desorption. The presence of hydrogen molecules as H− ions was confirmed by 1H-NMR, gas chromatography, and neutron diffraction analyses. We confirmed the hydrogen state stability inside the mayenite cage by the first-principles calculations to understand the adsorption mechanism and storage capacity and to provide a key for the use of mayenite as a portable hydrogen storage material. Further, we succeeded in introducing H− directly from OH− by a simple process compared with previous studies that used long treatment durations and required careful control of humidity and oxygen gas to form O2 species before the introduction of H−.