Sensors (Oct 2023)

Design of Zeolitic Imidazolate Framework-8-Functionalized Capacitive Micromachined Ultrasound Transducer Gravimetric Sensors for Gas and Hydrocarbon Vapor Detection

  • Mindaugas Dzikaras,
  • Dovydas Barauskas,
  • Donatas Pelenis,
  • Gailius Vanagas,
  • Marius Mikolajūnas,
  • Jingming Shi,
  • Jonas Baltrusaitis,
  • Darius Viržonis

DOI
https://doi.org/10.3390/s23218827
Journal volume & issue
Vol. 23, no. 21
p. 8827

Abstract

Read online

A capacitive micromachined ultrasound transducer (CMUT) was engineered and functionalized with zeolitic imidazolate framework-8 (ZIF-8) dispersed in a photoresist AZ1512HS (AZ) matrix to function as a gravimetric gas sensor. The sensor response was recorded in the presence of nitrogen, argon, carbon dioxide, and methane gases as well as water, acetylene, a propane/butane mixture, n-hexane, gasoline, and diesel vapors. The photoresist matrix alone was found to have a negligible response to all the gases and vapors, except for water vapor. No visible difference in sensor response was detected when switching from nitrogen to methane gas. However, a strong shift in the sensor resonance frequency was observed when exposed to higher hydrocarbons, ranging from 1 kHz for acetylene to 7.5 kHz for gasoline. Even longer-chain hydrocarbons, specifically kerosene and more so diesel, had a significantly reduced sensor frequency shift compared with gasoline. Sensors functionalized with a thin film of AZ+ZIF-8 demonstrated higher sensitivity in their response to a hydrocarbon molecular mass than without functionalization.

Keywords