Applied Sciences (Nov 2023)

Event Knowledge Graph: A Review Based on Scientometric Analysis

  • Shishuo Xu,
  • Sirui Liu,
  • Changfeng Jing,
  • Songnian Li

DOI
https://doi.org/10.3390/app132212338
Journal volume & issue
Vol. 13, no. 22
p. 12338

Abstract

Read online

In the last decade, the event knowledge graph field has received significant attention from both academic and industry communities, leading to the proliferated publication of numerous scientific papers in diverse journals, countries, and disciplines. However, a comprehensive and systematic survey of the recent literature in this area to obtain how the development of event knowledge graph evolves over time is lacking. To address this gap, we performed scientometric analyses utilizing the CiteSpace software of version 6.2.R4 package to extract and analyze data from the Web of Science database, including information about authors, journals, countries, and keywords. We then constructed four networks, including the author co-citation network, journal co-citation network, collaborative country network, and keyword co-occurrence network. Analyzing these networks allowed us to identify core authors, research hotspots, landmark journals, and national collaborations, as well as emerging trends by assessing the central nodes and nodes with strong citation bursts. Our contribution mainly lies in providing a scientometric way to quantitatively capture the research patterns in the last decade in the event knowledge graph field. Our work provides not only a structured view of the state-of-the-art literature but also insights into future trends in the event knowledge graph field, aiding researchers in conducting further research in this area.

Keywords