Applied Sciences (Jun 2019)

Numerical Modeling of Non-Uniformly Reinforced Carbon Concrete Lightweight Ceiling Elements

  • Rostislav Chudoba,
  • Ehsan Sharei,
  • Tilo Senckpiel-Peters,
  • Frank Schladitz

DOI
https://doi.org/10.3390/app9112348
Journal volume & issue
Vol. 9, no. 11
p. 2348

Abstract

Read online

The paper focuses on the specifics of macro-scale modeling of thin-walled textile-reinforced concrete shells. Application of layered shell finite elements requires systematic procedures for identification of material characteristics associated with the individual layers within the cross section. The identification of the material parameters describing the tensile behavior of a composite cross section is done using data obtained from the tensile test. Such test is usually performed only for a reference configurations with a simple layup of fabrics and a chosen thickness. The question is how to derive the strain-hardening response from the tensile test that is relevant for a changed cross-sectional configuration. We describe and discuss scaling and mixture rules that can be used to modify the material parameters for modified cross-sectional layups. The rules are examined in the context of the test results obtained on a shell that was reinforced non-uniformly, with varying types of textile fabrics and varying thickness within the shell surface.

Keywords