In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

The sPHENIX Experiment

EPJ Web of Conferences. 2018;171:10002 DOI 10.1051/epjconf/201817110002

 

Journal Homepage

Journal Title: EPJ Web of Conferences

ISSN: 2100-014X (Online)

Publisher: EDP Sciences

LCC Subject Category: Science: Physics

Country of publisher: France

Language of fulltext: English

Full-text formats available: PDF

 

AUTHORS


Pérez Lara Carlos E.

EDITORIAL INFORMATION

Editorial review

Editorial Board

Instructions for authors

Time From Submission to Publication: 6 weeks

 

Abstract | Full Text

Our understanding of QCD under extreme conditions has advanced tremendously in the last 20 years with the discovery of the Quark Gluon Plasma and its characterisation in heavy ion collisions at RHIC and LHC. The sPHENIX detector planned at RHIC is designed to further study the microscopic nature of the QGP through precision measurements of jet, upsilon and open heavy flavor probes over a broad pT range. The multi-year sPHENIX physics program will commence in early 2023, using state-of-the art detector technologies to fully exploit the highest RHIC luminosities. The experiment incorporates the 1.4 T former BaBar solenoid magnet, and will feature high precision tracking and vertexing capabilities, provided by a compact TPC, Si-strip intermediate tracker and MAPS vertex detector. This is complemented by highly granular electromagnetic and hadronic calorimetry with full azimuthal coverage. In this document I describe the sPHENIX detector design and physics program, with particular emphasis on the comprehensive open heavy flavour program enabled by the experiment’s large coverage, high rate capability and precision vertexing.