Scientific Reports (Jun 2022)

Characterization of intestinal microbiota in normal weight and overweight Border Collie and Labrador Retriever dogs

  • Giada Morelli,
  • Ilaria Patuzzi,
  • Carmen Losasso,
  • Antonia Ricci,
  • Barbara Contiero,
  • Igino Andrighetto,
  • Rebecca Ricci

DOI
https://doi.org/10.1038/s41598-022-13270-6
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Obesity in dogs is an emerging issue that affects canine health and well-being. Its development is ascribed to several factors, including genetic predisposition and dietary management, and recent evidence suggests that intestinal microbiota may be involved as well. Previous works have shown obesity to be linked to significant changes in gut microbiota composition in humans and mice, but only limited information is available on the role played by canine gut microbiota. The aim of this exploratory study was to investigate whether composition of canine faecal microbiota may be influenced by overweight condition and breed. All the enrolled companion dogs were young adults, intact, healthy, and fed commercial extruded pet food; none had received antibiotics, probiotics or immunosuppressant drugs in the previous six months. Labrador Retriever (LR) and Border Collie (BC) were chosen as reference breeds and Body Condition Score (BCS) on a 9-point scale as reference method for evaluating body fat. The faecal microbial communities of 15 lean (BCS 4–5/9; 7 LRs and 8 BCs) and 14 overweight (BCS > 5/9; 8 LRs and 6 BCs) family dogs were analysed using 16S rRNA gene sequencing. Moreover, for each dog, the daily intake of energy (kcal/d) and dietary macronutrients (g/d) were calculated according to an accurate feeding history collection. Firmicutes and Bacteroidetes resulted the predominant phyla (51.5 ± 10.0% and 33.4 ± 8.5%, respectively) in all dogs. Bioinformatic and statistical analysis revealed that no bacterial taxon differed significantly based on body condition, except for genus Allisonella (p 0.10) or for divergence within the sample set (i.e., beta diversity, p > 0.05). PERMANOVA tests performed on single factors demonstrated the tendency of dietary protein to influence the recruited dogs’ microbiota beta-diversity at amplicon sequence variant level (p = 0.08). In conclusion, the faecal microbiota of dogs involved in this exploratory study showed no major variations based on body condition. However, our findings suggested that certain bacterial taxa previously acknowledged in obesity-related studies may be detected in dissimilar amounts depending on canine breed.