Nature Communications (May 2023)

Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel

  • Feipeng Chen,
  • Xiufeng Li,
  • Yafeng Yu,
  • Qingchuan Li,
  • Haisong Lin,
  • Lizhi Xu,
  • Ho Cheung Shum

DOI
https://doi.org/10.1038/s41467-023-38394-9
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Engineering heterogeneous hydrogels with distinct phases at various lengths, which resemble biological tissues with high complexity, remains challenging by existing fabricating techniques that require complicated procedures and are often only applicable at bulk scales. Here, inspired by ubiquitous phase separation phenomena in biology, we present a one-step fabrication method based on aqueous phase separation to construct two-aqueous-phase gels that comprise multiple phases with distinct physicochemical properties. The gels fabricated by this approach exhibit enhanced interfacial mechanics compared with their counterparts obtained from conventional layer-by-layer methods. Moreover, two-aqueous-phase gels with programmable structures and tunable physicochemical properties can be conveniently constructed by adjusting the polymer constituents, gelation conditions, and combining different fabrication techniques, such as 3D-printing. The versatility of our approach is demonstrated by mimicking the key features of several biological architectures at different lengths: macroscale muscle-tendon connections; mesoscale cell patterning; microscale molecular compartmentalization. The present work advances the fabrication approach for designing heterogeneous multifunctional materials for various technological and biomedical applications.