Molecular Therapy: Nucleic Acids (Dec 2020)

miR-499 rs3746444 and miR-196a-2 rs11614913 Are Associated with the Risk of Glioma, but Not the Prognosis

  • Si Yang,
  • Yi Zheng,
  • Linghui Zhou,
  • Jing Jin,
  • Yujiao Deng,
  • Jia Yao,
  • Pengtao Yang,
  • Li Yao,
  • Ying Wu,
  • Zhen Zhai,
  • Na Li,
  • Lijuan Lyu,
  • Zhijun Dai

Journal volume & issue
Vol. 22
pp. 340 – 351

Abstract

Read online

Previous studies of correlations of microRNA (miR)-499 rs3746444 and miR-196a-2 rs11614913 polymorphisms with glioma risk have yielded inconsistent results. In this study, relationships between these two polymorphisms and glioma risk and survival were evaluated. In total, 605 patients and 1,300 controls were genotyped. rs3746444 increased glioma risk in five genetic models (GA versus AA, odds ratio [OR], 95% confidence interval [CI] = 1.31 [1.05–1.66], p = 0.02; GG versus AA, OR [95% CI] = 10.70 [6.13–18.69], p < 0.0001; GA + GG versus AA, OR [95% CI] = 1.82 [1.47–2.24], p < 0.0001; GG versus AA + GA, OR [95% CI] = 9.99 [5.74–17.40], p < 0.0001; G versus A, OR [95% CI] = 2.18 [1.82–2.60], p < 0.0001). rs11614913 decreased glioma risk in a recessive model (OR [95% CI] = 0.79 [0.64–0.97], p = 0.03). No relationships between either SNP and survival were found. rs3746444 in the miR-499 seed region could affect target recognition. Bioinformatics analyses indicated that miR-499 rs3746444 is involved in various biological processes and pathways, including “cell adhesion molecule binding,” “positive regulation of catabolic process,” “NF-kappa B pathway,” and “PI3K-Akt pathway,” by targeting mRNAs. Our results suggested that miR-499 rs3746444 and miR-196a-2 rs11614913 have crucial roles in glioma susceptibility.

Keywords