Scientific Reports (Aug 2024)
Continuous manipulation of electromagnetic radiation based on ultrathin flexible frequency coding metasurface
Abstract
Abstract The physical characteristics of electromagnetic waves are combined with digital information in coding metasurfaces. Coding metasurfaces enable precise control of beams by flexibly designing coding sequences. However, achieving continuous multivariate modulation of electromagnetic waves on passive flexible coded metasurfaces remains a challenge. Previous passive coding metasurfaces have a fixed phase difference between adjacent coding units throughout the operating frequency band, and when the coding pattern is defined, the coded metasurface can only achieve a single electromagnetic function. Our proposed frequency coding metasurface units vary linearly in phase difference over the operating frequency band with different phase sensitivities. Frequency coding metarsurfaces enable a wide range of tunable and versatile electromagnetic energy radiation, without introducing any active devices and changing the coding pattern. As a demonstration of the concept, we have shown theoretically and numerically that frequency coding metasurface can achieve successive transformations of electromagnetic functions, including multi-beam generation, anomalous deflection and diffuse scattering. In addition, beam sweeping function is achieved by means of spatially non-periodically distributed frequency coding metasurface. When the frequency of the incident wave is changed, the deflection angle of the beam is also changed. In addition to the tunability of properties, research on coding metasurfaces has tended to be limited to rigid materials. Flexible coding metasurfaces have potential applications in microwave antennas, radar and aircraft. The passive flexible frequency coding metasurfaces provide a novel approach to manipulating electromagnetic waves with increased design flexibility. This promises applications in microwave antennas, radar, aircraft, and satellite communications.
Keywords