Sensors (Feb 2024)
RC-LAHR: Road-Side-Unit-Assisted Cloud-Based Location-Aware Hybrid Routing for Software-Defined Vehicular Ad Hoc Networks
Abstract
The reliability of the communication link is quite common and challenging to handle as the topology changes frequently in vehicular ad hoc networks (VANETs). Another problem with VANETs is that the vehicles are from different manufacturers. Hence, the heterogeneity of hardware is obvious. These heterogeneity and reliability problems affect the message dissemination in VANETs. This paper aims to address these challenges by proposing a robust routing protocol capable of ensuring reliable, scalable, and heterogeneity-tolerant message dissemination in VANETs. We first introduced a hybrid hierarchical architecture based on software-defined networking (SDN) principles for VANETs, leveraging SDN’s inherent scalability and adaptability to heterogeneity. Further, a road-side unit (RSU)-assisted cloud-based location-aware hybrid routing for software-defined VANETs (SD-VANETs) that we call RC-LAHR was proposed. RC-LAHR was rigorously tested and analyzed for its performance in terms of packet delivery ratio (PDR) and end-to-end delay (EED), along with a comprehensive assessment of network traffic and load impacts on cloud infrastructure and RSUs. The routing protocol is compared with state-of-the-art protocols, Greedy Perimeter Stateless Routing (GPSR) and Opportunistic and Position-Based Routing (OPBR). The proposed routing protocol performs well as compared to GPSR and OPBR. The result shows that the EED is reduced to 20% and the PDR is increased to 30%. The network reliability is also increased up to 5% as compared to the OPBR and GPSR.
Keywords