Machine Learning: Science and Technology (Jan 2023)

New angles on fast calorimeter shower simulation

  • Sascha Diefenbacher,
  • Engin Eren,
  • Frank Gaede,
  • Gregor Kasieczka,
  • Anatolii Korol,
  • Katja Krüger,
  • Peter McKeown,
  • Lennart Rustige

DOI
https://doi.org/10.1088/2632-2153/acefa9
Journal volume & issue
Vol. 4, no. 3
p. 035044

Abstract

Read online

The demands placed on computational resources by the simulation requirements of high energy physics experiments motivate the development of novel simulation tools. Machine learning based generative models offer a solution that is both fast and accurate. In this work we extend the Bounded Information Bottleneck Autoencoder (BIB-AE) architecture, designed for the simulation of particle showers in highly granular calorimeters, in two key directions. First, we generalise the model to a multi-parameter conditioning scenario, while retaining a high degree of physics fidelity. In a second step, we perform a detailed study of the effect of applying a state-of-the-art particle flow-based reconstruction procedure to the generated showers. We demonstrate that the performance of the model remains high after reconstruction. These results are an important step towards creating a more general simulation tool, where maintaining physics performance after reconstruction is the ultimate target.

Keywords