Materials Today Bio (Aug 2024)

Nickel atom-clusters nanozyme for boosting ferroptosis tumor therapy

  • Hongji Liu,
  • Biao Yu,
  • Can Zhou,
  • Zhiming Deng,
  • Hui Wang,
  • Xin Zhang,
  • Kai Wang

Journal volume & issue
Vol. 27
p. 101137

Abstract

Read online

The translation of Fe-based agents for ferroptosis tumor therapy is restricted by the unstable iron valence state, the harsh catalytic environment, and the complex tumor self-protection mechanism. Herein, we developed a stable nickel-based single-atom-metal-clusters (NSAMCs) biocatalyst for efficient tumor ferroptosis therapy. NSAMCs with a nanowire-like nanostructure and hydrophilic functional groups exhibit good water-solubility, colloidal stability, negligible systemic toxicity, and target specificity. In particular, NSAMCs possess excellent peroxidase-like and glutathione oxidase-like activities through the synergistic influence between metal clusters and single atoms. The dual-enzymatic performance enables NSAMCs to synergistically promote efficient ferroptosis of cancer cells through lipid peroxidization aggregation and glutathione peroxidase 4 inactivation. Importantly, NSAMCs highlight the boost of ferroptosis tumor therapy via the synergistic effect between single-atoms and metal clusters, providing a practical and feasible paradigm for further improving the efficiency of ferroptosis tumor treatment.

Keywords