Remote Sensing (Aug 2019)

Lead-Induced Changes in Fluorescence and Spectral Characteristics of Pea Leaves

  • Marlena Kycko,
  • Elżbieta Romanowska,
  • Bogdan Zagajewski

DOI
https://doi.org/10.3390/rs11161885
Journal volume & issue
Vol. 11, no. 16
p. 1885

Abstract

Read online

Chlorophyll fluorescence parameters can provide useful indications of photosynthetic performance in vivo. Coupling appropriate fluorescence measurements with other noninvasive techniques, such as absorption spectroscopy or gas exchange, can provide insights into the limitations to photosynthesis under given conditions. Chlorophyll content is one of the dominant factors influencing the conditions of a vegetation growing season, and can be tested using both fluorescence and remote sensing methods. Hyperspectral remote sensing and recording the narrow range of the spectrum can be used to accurately analyze the parameters and properties of plants. The aim of this study was to analyze the influence of lead ions (Pb, 5 mM Pb(NO3)2) on the growth of pea plants using spectral properties. Hyperspectral remote sensing and chlorophyll fluorescence measurements were used to assess the physiological state of plants seedlings treated by lead ions during the experiment. The plants were growing in hydroponic cultures supplemented with Pb ions under various conditions (control, complete Knop + phosphorus (+P); complete Knop + phosphorus (+P) + Pb; Knop (-P) + Pb, distilled water + Pb) affecting lead uptake via the root system. Spectrometric measurements allowed us to calculate the remote sensing indices of vegetation, which were compared with chlorophyll and carotenoids content and fluorescence parameters. The lead contents in the leaves, roots, and stems were also analyzed. Spectral characteristics and vegetation properties were analyzed using statistical tests. We conclude that: (1) pea seedlings grown in complete Knop (with P) and in the presence of Pb ions were spectrally similar to the control plants because lead was not transported to the shoots of plants; (2) lead most influenced plants that were grown in water, according to the highest lead content in the leaves; and (3) the effects of lead on plant growth were confirmed by remote sensing indices, whereas fluorescence parameters identified physiological changes induced by Pb ions in the plants.

Keywords