Molecules (Mar 2024)

Theoretical Evaluation of Fluorinated Resazurin Derivatives for In Vivo Applications

  • Amílcar Duque-Prata,
  • Carlos Serpa,
  • Pedro J. S. B. Caridade

DOI
https://doi.org/10.3390/molecules29071507
Journal volume & issue
Vol. 29, no. 7
p. 1507

Abstract

Read online

Primarily owing to the pronounced fluorescence exhibited by its reduced form, resazurin (also known as alamarBlue®) is widely employed as a redox sensor to assess cell viability in in vitrostudies. In an effort to broaden its applicability for in vivo studies, molecular adjustments are necessary to align optical properties with the near-infrared imaging window while preserving redox properties. This study delves into the theoretical characterisation of a set of fluorinated resazurin derivatives proposed by Kachur et al., 2015 examining the influence of fluorination on structural and electrochemical properties. Assuming that the conductor-like polarisable continuum model mimics the solvent effect, the density functional level of theory combining M06-2X/6-311G* was used to calculate the redox potentials. Furthermore, (TD-)DFT calculations were performed with PBE0/def2-TZVP to evaluate nucleophilic characteristics, transition states for fluorination, relative energies, and fluorescence spectra. With the aim of exploring the potential of resazurin fluorinated derivatives as redox sensors tailored for in vivo applications, acid–base properties and partition coefficients were calculated. The theoretical characterisation has demonstrated its potential for designing novel molecules based on fundamental principles.

Keywords