Regenerative Therapy (Dec 2024)

Enhancement of therapeutic potential of mesenchymal stem cell by IGF-1 delivery in PLGA microspheres for tissue regeneration

  • Min Ge,
  • Li Sun,
  • Defeng Wang,
  • Chunchao Hei,
  • Tingjuan Huang,
  • Zhongxin Xu,
  • Qizhi Shuai

Journal volume & issue
Vol. 27
pp. 112 – 119

Abstract

Read online

The use of stem cell-based treatment systems is prevalent in regenerative medicine. To enhance the regenerative capabilities of stem cells, growth factors are typically incorporated into the treatment system. Nonetheless, traditional hydrogel-encapsulated or heparinized scaffolds that bind factors have limitations. In this study, we prepared a biomaterial strategy using uniform poly(lactic-co-glycolic) acid (PLGA) microspheres (uPLGA-Ms) fabricated by microfluidic to sustain delivery of insulin-like growth factor 1 (IGF-1), a critical protein for hMSCs biological functions. The uPLGA-Ms loaded IGF-1 were highly monodispersed through precise manipulation of the flow rate of the two-phase of the flow-focusing microchannle. The results showed that the uPLGA-Ms stabilize IGF-1 and provide a more efficient sustained delivery and cost-effective of growth factor. Gene expression analysis demonstrated the uPLGA delivery of IGF-1 results in a (enhanced) supported hMSCs expansion, survival, stemness, and secretion abilities comparable with the conventional soluble IGF-1 group. In summary, this material-based strategy to stabilize and sustain delivery of growth factor has broad potential to regeneration of various tissues and organs.

Keywords