Impact of Laser Intensity Noise on Dual-Comb Absolute Ranging Precision
Jiaqi Wang,
Haosen Shi,
Chunze Wang,
Minglie Hu,
Youjian Song
Affiliations
Jiaqi Wang
Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Science and Technology of Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
Haosen Shi
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Chunze Wang
Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Science and Technology of Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
Minglie Hu
Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Science and Technology of Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
Youjian Song
Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Science and Technology of Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
Noise in mode-locked lasers has been a central issue for dual-comb metrological applications. In this work, we investigate the laser intensity noise on dual-comb absolute ranging precision. Two different dual-comb schemes based on linear optical sampling (LOS) and nonlinear asynchronous optical sampling (ASOPS) have been constructed. In the LOS scheme, the ranging precision deteriorates with the increase in laser relative intensity noise (RIN). This effect can be corrected by implementing a balanced photo-detection (BPD). In the ASOPS scheme, the experiment shows that the conversion from laser RIN to dual-comb ranging precision is negligible, making a balanced detection unnecessary for ranging precision improvement. The different manners of RIN’s impact on absolute ranging precision are attributed to the distinct cross-correlation signal patterns and the underlying time-of-flight (TOF) extraction algorithms.