Advances in Rheumatology (May 2024)

Subclinical joint inflammation in rheumatoid arthritis: comparing thermal and ultrasound imaging at the metacarpophalangeal joint

  • York Kiat Tan,
  • Gek Hsiang Lim

DOI
https://doi.org/10.1186/s42358-024-00377-9
Journal volume & issue
Vol. 64, no. 1
pp. 1 – 6

Abstract

Read online

Abstract Background While ultrasound and MRI are both superior to clinical examination in the detection of joint inflammation, there is presently a lack of data whether thermography may be similarly useful in the assessment of joint inflammation in patients with RA. Our study aims to evaluate the use of thermography in detecting subclinical joint inflammation at clinically quiescent (non-tender and non-swollen) metacarpophalangeal joints (MCPJs) in patients with rheumatoid arthritis (RA). The outcomes from thermography in our study will be compared with ultrasonography (which is a more established imaging tool used for joint inflammation assessment in RA). Methods The minimum (Tmin), average (Tavg) and maximum (Tmax) temperatures at the 10 MCPJs of each patient were summed to obtain the Total Tmin, Total Tavg and Total Tmax, respectively. Ultrasound grey-scale (GS) and power Doppler (PD) joint inflammation (scored semi-quantitatively, 0–3) at the 10 MCPJs were summed up to derive the respective TGS and TPD scores per patient. Pearson’s correlation and simple linear regression were respectively used to assess correlation and characterize relationships between thermographic parameters (Total Tmin, Total Tavg and Total Tmax) and ultrasound imaging parameters (TGS, TPD and the number of joint(s) with PD ≥ 1 or GS ≥ 2). Results In this cross-sectional study, 420 clinically non-swollen and non-tender MCPJs from 42 RA patients were examined. All thermographic parameters (Total Tmin, Total Tavg and Total Tmax) correlated significantly (P-values ranging from 0.001 to 0.0012) with TGS score (correlation coefficient ranging from 0.421 to 0.430), TPD score (correlation coefficient ranging from 0.383 to 0.424), and the number of joint(s) with PD ≥ 1 or GS ≥ 2 (correlation coefficient ranging from 0.447 to 0.465). Similarly, simple linear regression demonstrated a statistically significant relationship (P-values ranging from 0.001 to 0.005) between all thermographic parameters (Total Tmin, Total Tavg and Total Tmax) and ultrasound imaging parameters (TPD and TGS). Conclusion For the first time, thermographic temperatures were shown to correlate with ultrasound-detected joint inflammation at clinically quiescent MCPJs. The use of thermography in the detection of subclinical joint inflammation in RA appears promising and warrants further investigation.

Keywords