PLoS ONE (Jan 2012)

Brain activation patterns at exhaustion in rats that differ in inherent exercise capacity.

  • Teresa E Foley,
  • Leah R Brooks,
  • Lori J Gilligan,
  • Paul R Burghardt,
  • Lauren G Koch,
  • Steven L Britton,
  • Monika Fleshner

DOI
https://doi.org/10.1371/journal.pone.0045415
Journal volume & issue
Vol. 7, no. 9
p. e45415

Abstract

Read online

In order to further understand the genetic basis for variation in inherent (untrained) exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively). The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA) levels of c-Fos, a marker of neuronal activation, in the brains of HCR and LCR rats after a single bout of acute treadmill running (7.5-15 minutes, 15° slope, 10 m/min) or after treadmill running to exhaustion (15-51 minutes, 15° slope, initial velocity 10 m/min). During verification of trait differences, HCR rats ran six times farther and three times longer prior to exhaustion than LCR rats. Running to exhaustion significantly increased c-Fos mRNA activation of several brain areas in HCR, but LCR failed to show significant elevations of c-Fos mRNA at exhaustion in the majority of areas examined compared to acutely run controls. Results from these studies suggest that there are differences in central c-Fos mRNA expression, and potential brain activation patterns, between HCR and LCR rats during treadmill running to exhaustion and these differences could be involved in the variation in inherent running capacity between lines.