Metals (Jan 2018)
Influence of Heat Treatment and UV Irradiation on the Wettability of Ti35Nb10Ta Nanotubes
Abstract
The implant osseointegration rate depends on the surface’s topography and chemical composition. There is a growing interest in the anodic oxidation process to obtain an oxide layer with a nanotube morphology on beta titanium alloys. This surface treatment presents large surface area, nanoscale rugosity and electrochemical properties that may increase the biocompatibility and osseointegration rate in titanium implants. In this work, an anodic oxidation process was used to modify the surface on the Ti35Nb10Ta alloy to obtain a titanium nanotubes topography. The work focused on analyzing the influence of some variables (voltage, heat treatment and ultraviolet irradiation) on the wettability performance of a titanium alloy. The morphology of the nanotubes surfaces was studied by Field Emission Scanning Electron Microscopy (FESEM), and surface composition was analyzed by Energy Dispersive Spectroscopy (EDS). The measurement of contact angle for the TiO2 nanotube surfaces was measured by a video contact angle system. The surface with the non photoinduced nanotubes presented the largest contact angles. The post-heat treatment lowered the F/Ti ratio in the nanotubes and decreased the contact angle. Ultraviolet (UV) irradiation of the TiO2 nanotubes decrease the water contact angle.
Keywords