International Journal of Mathematics and Mathematical Sciences (Jan 1984)

Admissible groups, symmetric factor sets, and simple algebras

  • R. A. Mollin

DOI
https://doi.org/10.1155/S0161171284000739
Journal volume & issue
Vol. 7, no. 4
pp. 707 – 711

Abstract

Read online

Let K be a field of characteristic zero and suppose that D is a K-division algebra; i.e. a finite dimensional division algebra over K with center K. In Mollin [1] we proved that if K contains no non-trivial odd order roots of unity, then every finite odd order subgroup of D* the multiplicative group of D, is cyclic. The first main result of this paper is to generalize (and simplify the proof of) the above. Next we generalize and investigate the concept of admissible groups. Finally we provide necessary and sufficient conditions for a simple algebra, with an abelian maximal subfield, to be isomorphic to a tensor product of cyclic algebras. The latter is achieved via symmetric factor sets.

Keywords