PLoS ONE (Jan 2024)

Forest carbon sequestration on the west coast, USA: Role of species, productivity, and stockability.

  • Paul J Chisholm,
  • Andrew N Gray

DOI
https://doi.org/10.1371/journal.pone.0302823
Journal volume & issue
Vol. 19, no. 5
p. e0302823

Abstract

Read online

Forest ecosystems store large amounts of carbon and can be important sources, or sinks, of the atmospheric carbon dioxide that is contributing to global warming. Understanding the carbon storage potential of different forests and their response to management and disturbance events are fundamental to developing policies and scenarios to partially offset greenhouse gas emissions. Projections of live tree carbon accumulation are handled differently in different models, with inconsistent results. We developed growth-and-yield style models to predict stand-level live tree carbon density as a function of stand age in all vegetation types of the coastal Pacific region, US (California, Oregon, and Washington), from 7,523 national forest inventory plots. We incorporated site productivity and stockability within the Chapman-Richards equation and tested whether intensively managed private forests behaved differently from less managed public forests. We found that the best models incorporated stockability in the equation term controlling stand carrying capacity, and site productivity in the equation terms controlling the growth rate and shape of the curve. RMSEs ranged from 10 to 137 Mg C/ha for different vegetation types. There was not a significant effect of ownership over the standard industrial rotation length (~50 yrs) for the productive Douglas-fir/western hemlock zone, indicating that differences in stockability and productivity captured much of the variation attributed to management intensity. Our models suggest that doubling the rotation length on these intensively managed lands from 35 to 70 years would result in 2.35 times more live tree carbon stored on the landscape. These findings are at odds with some studies that have projected higher carbon densities with stand age for the same vegetation types, and have not found an increase in yields (on an annual basis) with longer rotations. We suspect that differences are primarily due to the application of yield curves developed from fully-stocked, undisturbed, single-species, "normal" stands without accounting for the substantial proportion of forests that don't meet those assumptions. The carbon accumulation curves developed here can be applied directly in growth-and-yield style projection models, and used to validate the predictions of ecophysiological, cohort, or single-tree style models being used to project carbon futures for forests in the region. Our approach may prove useful for developing robust models in other forest types.