The Innovation (Jan 2022)

Engineering vacancy and hydrophobicity of two-dimensional TaTe2 for efficient and stable electrocatalytic N2 reduction

  • Zhenqing Zhao,
  • Jongseo Park,
  • Changhyeok Choi,
  • Song Hong,
  • Xiangchao Hui,
  • Hao Zhang,
  • Tsz Woon Benedict Lo,
  • Alex W. Robertson,
  • Zengxiang Lv,
  • Yousung Jung,
  • Zhenyu Sun

Journal volume & issue
Vol. 3, no. 1
p. 100190

Abstract

Read online

Demand for ammonia continues to increase to sustain the growing global population. The direct electrochemical N2 reduction reaction (NRR) powered by renewable electricity offers a promising carbon-neutral and sustainable strategy for manufacturing NH3, yet achieving this remains a grand challenge. Here, we report a synergistic strategy to promote ambient NRR for ammonia production by tuning the Te vacancies (VTe) and surface hydrophobicity of two-dimensional TaTe2 nanosheets. Remarkable NH3 faradic efficiency of up to 32.2% is attained at a mild overpotential, which is largely maintained even after 100 h of consecutive electrolysis. Isotopic labeling validates that the N atoms of formed NH4+ originate from N2. In situ X-ray diffraction indicates preservation of the crystalline structure of TaTe2 during NRR. Further density functional theory calculations reveal that the potential-determining step (PDS) is ∗NH2 + (H+ + e–) → NH3 on VTe-TaTe2 compared with that of ∗ + N2 + (H+ + e–) → ∗N–NH on TaTe2. We identify that the edge plane of TaTe2 and VTe serve as the main active sites for NRR. The free energy change at PDS on VTe-TaTe2 is comparable with the values at the top of the NRR volcano plots on various transition metal surfaces. Public summary: • 2D TaTe2 is produced in large quantities • Jointly tuning the Te vacancies (VTe) and surface hydrophobicity of 2D TaTe2 enables efficient and stable electrocatalytic NRR with remarkable NH3 faradic efficiency • The edge plane of TaTe2 and VTe serve as the main active sites for NRR • The free energy change at the potential-determining step on VTe-TaTe2 is comparable with the values at the top of the NRR volcano plots on various transition metal surfaces

Keywords