eLife (Jun 2021)

Miro1-dependent mitochondrial dynamics in parvalbumin interneurons

  • Georgina Kontou,
  • Pantelis Antonoudiou,
  • Marina Podpolny,
  • Blanka R Szulc,
  • I Lorena Arancibia-Carcamo,
  • Nathalie F Higgs,
  • Guillermo Lopez-Domenech,
  • Patricia C Salinas,
  • Edward O Mann,
  • Josef T Kittler

DOI
https://doi.org/10.7554/eLife.65215
Journal volume & issue
Vol. 10

Abstract

Read online

The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²+-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in PV+ interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization, while PV+ interneuron-mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30–80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.

Keywords