Journal of the Serbian Chemical Society (Oct 2008)

Microstructured surfaces engineered using biological templates: a facile approach for the fabrication of superhydrophobic surfaces

  • DUSAN LOSIC

Journal volume & issue
Vol. 73, no. 11
pp. 1123 – 1135

Abstract

Read online

The fabrication of microstructured surfaces using biological templates was investigated with the aim of exploring of a facile and low cost approach for the fabrication of structured surfaces with superhydrophobic properties. Two soft lithographic techniques, i.e., replica moulding and nano-imprinting, were used to replicate the surfaces of a biological substrate. Leaves of the Agave plant (Agave attenuate), a cost-free biological template, were used as a model of a biosurface with superhydrophobic properties. The replication process was performed using two polymers: an elastomeric polymer, poly(dimethylsiloxane) (PDMS), and a polyurethane (PU) based, UV-curable polymer (NOA 60). In the first replication step, negative polymer replicas of the surface of leaves were fabricated, which were used as masters to fabricate positive polymer replicas by moulding and soft imprinting. The pattern with micro and nanostructures of the surface of the leaf possesses superhydrophobic properties, which was successfully replicated into both polymers. Finally, the positive replicas were coated with a thin gold film and modified with self-assembled monolayers (SAMs) to verify the importance of the surface chemistry on the hydrophobic properties of the fabricated structures. Wetting (contact angle) and structural (light microscopy and scanning electron microscopy) characterisation was performed to confirm the hydrophobic properties of the fabricated surfaces (> 150°), as well as the precision and reproducibility of the replication process.

Keywords