Cell Death Discovery (Jul 2022)

CircRNA mmu_circ_0000021 regulates microvascular function via the miR-143-3p/NPY axis and intracellular calcium following ischemia/reperfusion injury

  • Jingjie Xiong,
  • Yisen Hu,
  • Yi Liu,
  • Xiaocong Zeng

DOI
https://doi.org/10.1038/s41420-022-01108-z
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Cardiac ischemia-reperfusion (I/R) is associated with a high rate of complications. Restoring microvascular function is crucial for cardiac repair. However, the molecular mechanisms by which the circRNAs repairs microvascular dysfunction are unknown. High-throughput RNA sequencing and quantitative real-time PCR (qRT-PCR) were used to measures circRNA levels in cardiac tissue samples. We found a total of 80 up-regulated and 54 down-regulated differentially expressed circRNAs, of which mmu_circ_0000021 were consistent with bioinformatics predictions. Next, mmu_circ_0000021 knockdown and overexpression were performed to indicate the functional role of mmu_circ_0000021. The interaction of mmu_circ_0000021, miR-143-3p and NPY were evaluated using dual-luciferase assays, RNA pull-down assays and RNA immunoprecipitation (RIP). Immunohistochemistry, transmission electron microscopy, and immunofluorescence were used to determine the presence of leukocytes and changes in microvascular morphology and function. Mechanistically, mmu_circ_0000021 involved in regulating microvascular dysfunction via miR-143-3p by targeting NPY. However, the contraction of microvascular spasm caused by NPY is related to calmodulin. By regulating NPY, Circular RNA (circRNA) further affects microvascular spasm, regulates microcirculation disorders, and restores cardiac function. Our findings highlight a novel role for mmu_circ_0000021 by regulating microvascular function following I/R injury.