The Influence of Heat Treatment on the Photoactivity of Amine-Modified Titanium Dioxide in the Reduction of Carbon Dioxide
Iwona Pełech,
Piotr Staciwa,
Daniel Sibera,
Konrad Sebastian Sobczuk,
Wiktoria Majewska,
Ewelina Kusiak-Nejman,
Antoni W. Morawski,
Kaiying Wang,
Urszula Narkiewicz
Affiliations
Iwona Pełech
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
Piotr Staciwa
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
Daniel Sibera
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
Konrad Sebastian Sobczuk
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
Wiktoria Majewska
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
Ewelina Kusiak-Nejman
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
Antoni W. Morawski
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
Kaiying Wang
Department of Microsystems, University of South-Eastern Norway, 3184 Horten, Norway
Urszula Narkiewicz
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland
Modification of titanium dioxide using ethylenediamine (EDA), diethylamine (DEA), and triethylamine (TEA) has been studied. As the reference material, titanium dioxide prepared by the sol–gel method using titanium(IV) isopropoxide as a precursor was applied. The preparation procedure involved heat treatment in the microwave reactor or in the high-temperature furnace. The obtained samples have been characterized in detail. The phase composition was determined through the X-ray diffraction method, and the average crystallite size was calculated based on it. Values for specific surface areas and the total pore volumes were calculated based on the isotherms obtained through the low-temperature nitrogen adsorption method. The bang gap energy was estimated based on Tauc’s plots. The influence of the type and content of amine, as well as heat treatment on the photocatalytic activity of modified titanium dioxide in the photocatalytic reduction of carbon dioxide, was determined and discussed. It was clear that, regardless of the amount and content of amine introduced, the higher photoactivity characterized the samples prepared in the microwave reactor. The highest amounts of hydrogen, carbon monoxide, and methane have been achieved using triethylamine-modified titanium dioxide.