Alzheimer’s Research & Therapy (Aug 2021)

High-fat diet-induced atherosclerosis promotes neurodegeneration in the triple transgenic (3 × Tg) mouse model of Alzheimer’s disease associated with chronic platelet activation

  • Min Wang,
  • Junyan Lv,
  • Xiaoshan Huang,
  • Thomas Wisniewski,
  • Wei Zhang

DOI
https://doi.org/10.1186/s13195-021-00890-9
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Epidemiological studies link vascular disease risk factors such as atherosclerosis, hypertension, and diabetes mellitus with Alzheimer’s disease (AD). Whether there are direct links between these conditions to β-amyloid (Aβ) aggregation and tau pathology is uncertain. Methods To investigate the possible link between atherosclerosis and AD pathology, we subjected triple transgenic (3 × Tg) AD mice to a high-fat diet (HFD) at 3 months of age, which corresponds to early adulthood in humans. Results After 9 months of treatment, HFD-treated 3 × Tg mice exhibited worse memory deficits accompanied by blood hypercoagulation, thrombocytosis, and chronic platelet activation. Procoagulant platelets from HFD-treated 3 × Tg mice actively induced the conversion of soluble Aβ40 into fibrillar Aβ aggregates, associated with increased expression of integrin αIIbβ3 and clusterin. At 9 months and older, platelet-associated fibrillar Aβ aggregates were observed to obstruct the cerebral blood vessels in HFD-treated 3 × Tg mice. HFD-treated 3 × Tg mice exhibited a greater cerebral amyloid angiopathy (CAA) burden and increased cerebral vascular permeability, as well as more extensive neuroinflammation, tau hyperphosphorylation, and neuron loss. Disaggregation of preexisting platelet micro-clots with humanized GPIIIa49-66 scFv Ab (A11) significantly reduced platelet-associated fibrillar Aβ aggregates in vitro and improved vascular permeability in vivo. Conclusions These findings suggest that a major contribution of atherosclerosis to AD pathology is via its effects on blood coagulation and the formation of platelet-mediated Aβ aggregates that compromise cerebral blood flow and therefore neuronal function. This leads to cognitive decline.

Keywords