Remote Sensing (Dec 2022)
Sonar Image Target Detection Based on Style Transfer Learning and Random Shape of Noise under Zero Shot Target
Abstract
With the development of sonar technology, sonar images have been widely used to detect targets. However, there are many challenges for sonar images in terms of object detection. For example, the detectable targets in the sonar data are more sparse than those in optical images, the real underwater scanning experiment is complicated, and the sonar image styles produced by different types of sonar equipment due to their different characteristics are inconsistent, which makes it difficult to use them for sonar object detection and recognition algorithms. In order to solve these problems, we propose a novel sonar image object-detection method based on style learning and random noise with various shapes. Sonar style target sample images are generated through style transfer, which enhances insufficient sonar objects image. By introducing various noise shapes, which included points, lines, and rectangles, the problems of mud and sand obstruction and a mutilated target in the real environment are solved, and the single poses of the sonar image target is improved by fusing multiple poses of optical image target. In the meantime, a method of feature enhancement is proposed to solve the issue of missing key features when using style transfer on optical images directly. The experimental results show that our method achieves better precision.
Keywords