Geo Data (Dec 2021)

The Map Data of BRDF-Adjusted Surface Reflectance from GOCI Geostationary Satellite Imagery over Korean Peninsula

  • Jong-Min Yeom

DOI
https://doi.org/10.22761/DJ2021.3.4.006
Journal volume & issue
Vol. 3, no. 4
pp. 66 – 70

Abstract

Read online

In this study, the spatial maps of the BRDF (Bidirectional Reflectance Distribution Function) adjusted surface reflectance (SR) were estimated by using the Geostationary Ocean Color Imager (GOCI) mounted on the Communication, Ocean and Meteorological Satellite (COMS) over the Korean Peninsula. The BRDF-Adjusted surface Reflectance (BAR) is a more effective indicator that not only quantitatively identifies the growth characteristics of vegetation, but also corrects the bidirectional error in the time series observation characteristics, because the surface reflectance is changed according to the solar altitude during the daytime period. Therefore, this BAR products have high data utilization in various fields such as agriculture, environment, land surface information, and atmosphere. In this study, BRDF-adjusted surface reflectance maps were calculated for the Korean peninsula from April 2011 to December 2012 with hourly temporal resolution from 9 a.m. to 4 p.m. For the BAR surface reflectance, the spatial observation range is from latitude 34° N to 39 °N and longitude 125 ° E to 130 ° E, and the spatial resolution is 500 m. The semi-empirical BRDF model was used to calculate the BRDF-adjusted surface reflectance, and the radiometric characteristics of surface reflectance were decomposed into isotropic scattering, geometric scattering, and volumetric scattering. For this model simulation, at least 7 clear pixels are required to fit BRDF model. In this study, unlike the Nadir BRDF-Adjusted surface Reflectance (NBAR) calculation method which was calculated from the existing polar orbiting satellites, semi-empirical BRDF modeling was performed with a value fixed to the satellite viewing angle for each pixel since geostationary satellites of GOCI are difficult to observe in the nadir direction unlike polar satellites. It is more effective to perform BRDF correction by fixing them at the viewing angle in the case of GOCI geostationary satellite.

Keywords