Virtual and Physical Prototyping (Dec 2024)
Accelerated improvement in tensile superelasticity of electron beam directed energy deposition manufactured NiTi alloys by artificial thermal cycling combined with low temperature aging treatment
Abstract
ABSTRACTThe low-temperature aging treatment at 250°C can significantly improve the tensile superelasticity of NiTi alloys fabricated by electron beam directed energy deposition (EB-DED). However, it requires a very long aging duration (up to 200 h) to achieve excellent tensile superelasticity due to inherent coarse grain size. To accelerate the aging process, the high-density dislocations are introduced by artificial thermal cycling treatment prior to the aging treatment (the original dislocation content in EB-DED processed NiTi alloys is very low), which will promote the subsequent uniform precipitation of nanoscale Ni4Ti3 particles during low-temperature aging treatment. The phase transformation behaviour always maintains a stable two-stage martensitic phase transformation. Under a cyclic tensile test at 6% strain, 24 h aged sample with thermal cycling maintains a recovery rate exceeding 90% even after 10 cycles, comparable to the performance of the sample aged for 200 h without thermal cycling, indicating a substantial improvement in aging efficiency.
Keywords