Research on Silicon-Substrate-Integrated Widely Tunable, Narrow Linewidth External Cavity Lasers
Xuan Li,
Junce Shi,
Long Wei,
Keke Ding,
Yuhang Ma,
Zaijin Li,
Lin Li,
Yi Qu,
Zhongliang Qiao,
Guojun Liu,
Lina Zeng
Affiliations
Xuan Li
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Academician Team Innovation Center of Hainan Province, College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Junce Shi
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Academician Team Innovation Center of Hainan Province, College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Long Wei
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Academician Team Innovation Center of Hainan Province, College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Keke Ding
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Academician Team Innovation Center of Hainan Province, College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Yuhang Ma
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Academician Team Innovation Center of Hainan Province, College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Zaijin Li
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Academician Team Innovation Center of Hainan Province, College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Lin Li
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Academician Team Innovation Center of Hainan Province, College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Yi Qu
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Academician Team Innovation Center of Hainan Province, College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Zhongliang Qiao
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Academician Team Innovation Center of Hainan Province, College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Guojun Liu
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Academician Team Innovation Center of Hainan Province, College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Lina Zeng
Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Academician Team Innovation Center of Hainan Province, College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
Widely tunable, narrow linewidth external cavity lasers on silicon substrates have many important applications, such as white-light interferometry, wavelength division multiplexing systems, coherent optical communication, and optical fiber sensor technology. Wide tuning range, high laser output power, single mode, stable spectral output, and high side-mode suppression ratio external cavity lasers have attracted much attention for their merits. In this paper, two main device-integrated structures for achieving widely tunable, narrow linewidth external cavity lasers on silicon substrates are reviewed and compared in detail, such as MRR-integrated structure and MRR-and-MZI-integrated structure of external cavity semiconductor lasers. Then, the chip-integrated structures are briefly introduced from the integration mode, such as monolithic integrated, heterogeneous integrated, and hybrid integrated. Results show that the silicon-substrate-integrated external cavity lasers are a potential way to realize a wide tuning range, high power, single mode, stable spectral output, and high side-mode suppression ratio laser output.