Smart Materials in Medicine (Jan 2022)

A three-layered hydrogel patch with hierarchy releasing of PLGA nanoparticle drugs decrease neointimal hyperplasia

  • Shunbo Wei,
  • Jing’an Li,
  • Hao He,
  • Chang Shu,
  • Alan Dardik,
  • Hualong Bai

Journal volume & issue
Vol. 3
pp. 139 – 147

Abstract

Read online

Hydrogel is a nature scaffold that can degraded in animal body and can be used as a drug delivery system, we hypothesized that patch made of three layers of hydrogel with different PLGA nanoparticle drugs (bio-patch) can be used to decrease venous neointimal hyperplasia. Rat inferior vena cava (IVC) patch venoplasty model was used. Samples from rat IVC direct suture (DS), decellularized thoracic artery patch (TA) venoplasty and bovine pericardial patch (BPP) venoplasty were examined at day 14 after implantation. Sodium alginate and hyaluronic acid (SA/HA) hydrogel was used, three layers hydrogel patch (control) and three layers hydrogel patch with PLGA nanoparticle drugs (bio-patch) were used in rat IVC venoplasty. Patches were harvested at day 14 and analyzed. In rats, TA and BPP patch showed a thicker neointima and adventitia compared to the DS, there were larger numbers of CD68 and PCNA positive cells in both groups. The control hydrogel patch showed much thinner neointima and adventitia compared to TA and BPP patches. In both of the neointima and peri-patch area, bio-patch showed significantly fewer smooth muscle cells, fewer CD68, fewer PCNA positive cells, fewer collagen-1 positive cells, fewer p-smad2 positive cells, fewer TNF-α positive cells compared to control hydrogel patch. Bio-patch made of hydrogel and PLGA nanoparticle drugs showed a thinner neointimal thickness, and is biocompatible to the animal body. These results showed the potential application of hydrogel patch in vascular surgery.

Keywords