PLoS ONE (Jan 2022)

Identification and phylogenetic analysis of the genus Syringa based on chloroplast genomic DNA barcoding

  • Ruihong Yao,
  • Runfang Guo,
  • Yuguang Liu,
  • Ziqian Kou,
  • Baosheng Shi

Journal volume & issue
Vol. 17, no. 7

Abstract

Read online

DNA barcoding is a supplementary tool in plant systematics that is extensively used to resolve species-level controversies. This study assesses the significance of using two DNA barcoding loci (e.g., psbA-trnH and trnC-petN) in distinguishing 33 plant samples of the genus Syringa. Results showed that the average genetic distance K2P of psbA-trnH DNA marker was 0.0521, which is much higher than that of trnC-petN, which is 0.0171. A neighbor-joining phylogenetic tree based on psbA-trnH and trnC-petN indicated that the identification rate of psbA-trnH and trnC-petN alone were 75% and 62.5%, respectively. The barcode combination of psbA-trnH+trnC-petN could identify 33 samples of the genus Syringa accurately and effectively with an identification rate of 87.5%. The 33 Syringa samples were divided into four groups: Group I is series Syringa represented by Syringa oblata; Group II is series Villosae represented by Syringa villosa; Group III is series Pubescentes represented by Syringa meyeri; and Group IV is section Ligustrina represented by Syringa reticulata subsp. pekinensis. These research results provided strong evidence that the combinatorial barcode of psbA-trnH+trnC-petN had high-efficiency identification ability and application prospects in species of the genus Syringa.