Remote Sensing (May 2024)
A Daily High-Resolution Sea Surface Temperature Reconstruction Using an I-DINCAE and DNN Model Based on FY-3C Thermal Infrared Data
Abstract
The sea surface temperature (SST) is one of the most important parameters that characterize the thermal state of the ocean surface, directly affecting the heat exchange between the ocean and the atmosphere, climate change, and weather generation. Generally, due to factors such as the weather, satellite scanning orbit range, and satellite sensor malfunction, there are large areas of missing satellite remote sensing SST data, greatly reducing data utilization. In this situation, how to use effective data or avenues to rebuild missing SST data has become a research hotspot in the field of ocean remote sensing. Based on the SST data from an FY-3C visible and infrared radiometer with a spatial resolution of 5 km (FY-3C VIRR), an improved data interpolation convolutional autoencoder (I-DINCAE) was used to reconstruct the missing SST data. Through cross-validation, the accuracy of the reconstruction results was quantitatively evaluated with an RMSE of 0.36 °C and an MAE of 0.24 °C. The results showed that the I-DINCAE algorithm outperformed the original DINCAE algorithm greatly. For further optimization, a deep neural network (DNN) was chosen to adjust the error between the reconstructed SST and the in situ data. The RMSE of the final adjusted SST and in situ data is 0.466 °C, and the MAE is 0.296 °C. Compared to the in situ data, the accuracy of the adjusted data has shown a significant improvement over the reconstructed data. This method successfully applies deep-learning technology to the reconstruction of SST data, achieving the full coverage and high accuracy of SST products, which can provide more reliable and complete SST data for marine scientific research.
Keywords