Nano‐calcipotriol as a potent anti‐hepatic fibrosis agent
Yina Zhang,
Liying Wang,
Jiajia Shao,
Yanning Liu,
Yining Lu,
Jing Yang,
Siduo Xu,
Jingkang Zhang,
Minwei Li,
Xiangrui Liu,
Min Zheng
Affiliations
Yina Zhang
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
Liying Wang
Department of Pharmacology and Department of Gastroenterology of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
Jiajia Shao
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
Yanning Liu
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
Yining Lu
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
Jing Yang
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
Siduo Xu
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
Jingkang Zhang
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
Minwei Li
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
Xiangrui Liu
Department of Pharmacology and Department of Gastroenterology of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
Min Zheng
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou China
Abstract Calcipotriol (CAL) has been widely studied as a fibrosis inhibitor and used to treat plaque psoriasis via transdermal administration. The clinical application of CAL to treat liver fibrosis is bottlenecked by its unsatisfactory pharmacokinetics, biodistribution, and side effects, such as hypercalcemia in patients. The exploration of CAL as a safe and effective antifibrotic agent remains a major challenge. Therefore, we rationally designed and synthesized a self‐assembled drug nanoparticle encapsulating CAL in its internal hydrophobic core for systematic injection (termed NPs/CAL) and further investigated the beneficial effect of the nanomaterial on liver fibrosis. C57BL/6 mice were used as the animal model, and human hepatic stellate cell line LX‐2 was used as the cellular model of hepatic fibrogenesis. Immunofluorescence staining, flow cytometry, western blotting, immunohistochemical staining, and in vitro imaging were used for evaluating the efficacy of NPs/CAL treatment. We found NPs/CAL can be quickly internalized in vitro, thus potently deactivating LX‐2 cells. In addition, NPs/CAL improved blood circulation and the accumulation of CAL in liver tissue. Importantly, NPs/CAL strongly contributed to the remission of liver fibrosis without inducing hypercalcemia. Overall, our work identifies a promising paradigm for the development of nanomaterial‐based agents for liver fibrosis therapy.