PLoS ONE (Jan 2011)

Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors.

  • Min Xu,
  • Lu Yu,
  • Bo Wan,
  • Long Yu,
  • Qiang Huang

DOI
https://doi.org/10.1371/journal.pone.0022644
Journal volume & issue
Vol. 6, no. 7
p. e22644

Abstract

Read online

Protein kinases have been found to possess two characteristic conformations in their activation-loops: the active DFG-in conformation and the inactive DFG-out conformation. Recently, it has been very interesting to develop type-II inhibitors which target the DFG-out conformation and are more specific than the type-I inhibitors binding to the active DFG-in conformation. However, solving crystal structures of kinases with the DFG-out conformation remains a challenge, and this seriously hampers the application of the structure-based approaches in development of novel type-II inhibitors. To overcome this limitation, here we present a computational approach for predicting the DFG-out inactive conformation using the DFG-in active structures, and develop related conformational selection protocols for the uses of the predicted DFG-out models in the binding pose prediction and virtual screening of type-II ligands. With the DFG-out models, we predicted the binding poses for known type-II inhibitors, and the results were found in good agreement with the X-ray crystal structures. We also tested the abilities of the DFG-out models to recognize their specific type-II inhibitors by screening a database of small molecules. The AUC (area under curve) results indicated that the predicted DFG-out models were selective toward their specific type-II inhibitors. Therefore, the computational approach and protocols presented in this study are very promising for the structure-based design and screening of novel type-II kinase inhibitors.