Brain Sciences (Mar 2020)

Comparison of Aneurysm Patency and Mural Inflammation in an Arterial Rabbit Sidewall and Bifurcation Aneurysm Model under Consideration of Different Wall Conditions

  • Basil Erwin Grüter,
  • Stefan Wanderer,
  • Fabio Strange,
  • Sivani Sivanrupan,
  • Michael von Gunten,
  • Hans Rudolf Widmer,
  • Daniel Coluccia,
  • Lukas Andereggen,
  • Javier Fandino,
  • Serge Marbacher

DOI
https://doi.org/10.3390/brainsci10040197
Journal volume & issue
Vol. 10, no. 4
p. 197

Abstract

Read online

Background: Biological processes that lead to aneurysm formation, growth and rupture are insufficiently understood. Vessel wall inflammation and degeneration are suggested to be the driving factors. In this study, we aimed to investigate the natural course of vital (non-decellularized) and decellularized aneurysms in a rabbit sidewall and bifurcation model. Methods: Arterial pouches were sutured end-to-side on the carotid artery of New Zealand White rabbits (vital [n = 6] or decellularized [n = 6]), and into an end-to-side common carotid artery bifurcation (vital [n = 6] and decellularized [n = 6]). Patency was confirmed by fluorescence angiography. After 28 days, all animals underwent magnetic resonance and fluorescence angiography followed by aneurysm harvesting for macroscopic and histological evaluation. Results: None of the aneurysms ruptured during follow-up. All sidewall aneurysms thrombosed with histological inferior thrombus organization observed in decellularized compared to vital aneurysms. In the bifurcation model, half of all decellularized aneurysms thrombosed whereas the non-decellularized aneurysms remained patent with relevant increase in size compared to baseline. Conclusions: Poor thrombus organization in decellularized sidewall aneurysms confirmed the important role of mural cells in aneurysm healing after thrombus formation. Several factors such as restriction by neck tissue, small dimensions and hemodynamics may have prevented aneurysm growth despite pronounced inflammation in decellularized aneurysms. In the bifurcation model, rarefication of mural cells did not increase the risk of aneurysm growth but tendency to spontaneous thrombosis.

Keywords