Forests (Sep 2022)

Comparison of Multiple Machine Learning Models for Estimating the Forest Growing Stock in Large-Scale Forests Using Multi-Source Data

  • Huajian Huang,
  • Dasheng Wu,
  • Luming Fang,
  • Xinyu Zheng

DOI
https://doi.org/10.3390/f13091471
Journal volume & issue
Vol. 13, no. 9
p. 1471

Abstract

Read online

The forest growing stock is one of the key indicators in monitoring forest resources, and its quantitative estimation is of great significance. Based on multi-source data, including Sentinel-1 radar remote sensing data, Sentinel-2 optical remote sensing data, digital elevation model (DEM), and inventory data for forest management planning and design, the Lasso feature selection method was used to remove the non-significant indicators, and three machine learning algorithms, GBDT, XGBoost, and CatBoost, were used to estimate forest growing stock. In addition, four category features, forest population, dominant tree species, humus thickness, and slope direction, were involved in estimating forest growing stock. The results showed that the addition of category features significantly improved the performance of the models. To a certain extent, radar remote sensing data also could improve estimating accuracy. Among the three models, the CatBoost model (R2 = 0.78, MSE = 0.62, MAE = 0.59, MAPE = 16.20%) had the highest estimating accuracy, followed by XGBoost (R2 = 0.75, MSE = 0.71, MAE = 0.62, MAPE = 18.28%) and GBDT (R2 = 0.72, MSE = 0.78, MAE = 0.68, MAPE = 20.28%).

Keywords