Scientific Reports (Sep 2024)
Application of testicular organ culture system for the evaluation of spermatogenesis impairment
Abstract
Abstract Recently, it was reported that a testicular organ culture system (TOCS) using polydimethylsiloxane (PDMS) chips with excellent oxygen permeability and biocompatibility, called the PDMS-chip ceiling (PC) method, enables improved spermatogenesis efficiency. We investigated whether this PC method is useful for detecting impaired spermatogenesis caused by busulfan (Bu), a typical testicular toxicant. In this study, testicular tissue fragments from Acro3-EGFP mice, which express the green fluorescent protein (GFP) and reflect the progression of spermatogenesis, were subjected to the PC method. When treated with Bu, cultured tissues shrank in volume, and their GFP-expressing area decreased or disappeared. Histological examination confirmed the regression of spermatogenesis. In addition, immunohistochemical examination revealed that spermatogonia, including spermatogonial stem cells (SSCs), were the primary targets of Bu toxicity. Time-course analysis demonstrated that the recovery of spermatogenesis, dependent on Bu concentration, correlated closely with the severity of damage to these target cells. These results suggest that the PC method is a useful approach for detecting spermatogenesis impairment accurately through faithful recapitulation of spermatogenesis in vivo.
Keywords