Journal of High Energy Physics (Jan 2021)
Inclusive prompt photon-jet correlations as a probe of gluon saturation in electron-nucleus scattering at small x
Abstract
Abstract We compute the differential cross-section for inclusive prompt photon+quark production in deeply inelastic scattering of electrons off nuclei at small x (e + A DIS) in the framework of the Color Glass Condensate effective field theory. The result is expressed as a convolution of the leading order (in the strong coupling α s) impact factor for the process and universal dipole matrix elements, in the limit of hard photon transverse momentum relative to the nuclear saturation scale Q s,A (x). We perform a numerical study of this process for the kinematics of the Electron-Ion Collider (EIC), exploring in particular the azimuthal angle correlations between the final state photon and quark. We observe a systematic suppression and broadening pattern of the back-to-back peak in the relative azimuthal angle distribution, as the saturation scale is increased by replacing proton targets with gold nuclei. Our results suggest that photon+jet final states in inclusive e + A DIS at high energies are in general a promising channel for exploring gluon saturation that is complementary to inclusive and diffractive dijet production. They also provide a sensitive empirical test of the universality of dipole matrix elements when compared to identical measurements in proton-nucleus collisions. However because photon+jet correlations at small x in EIC kinematics require jet reconstruction at small k ⊥, it will be important to study their feasibility relative to photon-hadron correlations.
Keywords