Journal of Marine Science and Engineering (Feb 2024)

A Data-Driven Method for Ship Motion Forecast

  • Zhiqiang Jiang,
  • Yongyan Ma,
  • Weijia Li

DOI
https://doi.org/10.3390/jmse12020291
Journal volume & issue
Vol. 12, no. 2
p. 291

Abstract

Read online

Accurate forecasting of ship motion is of great significance for ensuring maritime operational safety and working efficiency. A data-driven ship motion forecast method is proposed in this paper, aiming at the problems of low generalization of a single forecast model and insufficient forecast accuracy under unknown conditions. First, the fluid dynamics simulations of the ship are carried out under multiple node conditions based on overset mesh technology, and the obtained motion data is used for training the Bidirectional Long Short-term Memory network models. One or more pre-trained forecast models would be selected based on the correlation of condition nodes when forecasting ship motion under non-node conditions. The Golden Jackal Optimization Algorithm is used to compute the regression coefficient of each node model in real time, and finally, the dynamic model average is calculated. The results show that the method proposed in this study can accurately forecast the pitch and heave of the KCS ship in 5 s, 10 s, and 15 s of forecast duration. The accuracy of the multi-order forecast model improves more in longer forecast duration tasks compared with the first-order model. When forecasting ship motion under non-node conditions, the method shows stronger model generalization capabilities.

Keywords