Heliyon (Jun 2024)
A nanocarrier system based on CQDs for efficient mitoxantrone drug delivery
Abstract
Cancer is the second most fatal disease among women. In recent years, utilizing strategies based on carbon quantum dots (CQDs) as targeted drug delivery systems has had a significant impact on advancing and improving cancer treatment. This study is focused on the development of a nanocarrier, based on CQDs, for improving the therapeutic efficiency of mitoxantrone (MTX). Hence, the N-doped CQDs were synthesized by a hydrothermal method. Following its purification, MTX was loaded to the CQD, resulting in an increase in the size from 36.78 ± 0.9 nm to 157.8 ± 12.18 nm, with an ideal drug entrapment efficiency of 97 %. Drug release investigation showed a pH-dependent improvement, from 8 % at pH 7.4 to 11 % at pH 5.2 after 48 h. Based on the Methylthiazolyldiphenyl-tetrazolium bromide (MTT) results after 5 h of treatment on MCF-7 breast cancer cells, the N-doped CQD showed no significant effect on the cancer cells, whereas a half maximal Inhibitory Concentration (IC50) was achieved with the N-doped CQD-MTX complex at a concentration between 0.5 to 0.8 μM. Therefore, the newly developed drug delivery complex was capable of providing a rather identical influence on MCF-7 cells, as the free MTX, however, improving the pharmacokinetic of the drug by its controlled and on-target drug release, due to an alteration in distribution and absorption parameters.