Remote Sensing (Sep 2022)

Forest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China

  • Nan Zhang,
  • Mingjie Chen,
  • Fan Yang,
  • Cancan Yang,
  • Penghui Yang,
  • Yushan Gao,
  • Yue Shang,
  • Daoli Peng

DOI
https://doi.org/10.3390/rs14184434
Journal volume & issue
Vol. 14, no. 18
p. 4434

Abstract

Read online

Accurate estimation of forest height is crucial for the estimation of forest aboveground biomass and monitoring of forest resources. Remote sensing technology makes it achievable to produce high-resolution forest height maps in large geographical areas. In this study, we produced a 25 m spatial resolution wall-to-wall forest height map in Baoding city, north China. We evaluated the effects of three factors on forest height estimation utilizing four types of remote sensing data (Sentinel-1, Sentinel-2, ALOS PALSAR-2, and SRTM DEM) with the National Forest Resources Continuous Inventory (NFCI) data, three feature selection methods (stepwise regression analysis (SR), recursive feature elimination (RFE), and Boruta), and six machine learning algorithms (k-nearest neighbor (k-NN), support vector machine regression (SVR), random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and categorical boosting (CatBoost)). ANOVA was adopted to quantify the effects of three factors, including data source, feature selection method, and modeling algorithm, on forest height estimation. The results showed that all three factors had a significant influence. The combination of multiple sensor data improved the estimation accuracy. Boruta’s overall performance was better than SR and RFE, and XGBoost outperformed the other five machine learning algorithms. The variables selected based on Boruta, including Sentinel-1, Sentinel-2, and topography metrics, combined with the XGBoost algorithm, provided the optimal model (R2 = 0.67, RMSE = 2.2 m). Then, we applied the best model to create the forest height map. There were several discrepancies between the generated forest height map and the existing map product, and the values with large differences between the two maps were mostly distributed in the steep areas with high slope values. Overall, we proposed a methodological framework for quantifying the importance of data source, feature selection method, and machine learning algorithm in forest height estimation, and it was proved to be effective in estimating forest height by using freely accessible multi-source data, advanced feature selection method, and machine learning algorithm.

Keywords