Frontiers in Human Neuroscience (Aug 2023)
Maternal age differences in cognitive regulation: examination of associations and interactions between RSA and EEG frontoparietal alpha power coherence
Abstract
Strong cognitive regulation is advantageous for flexible, responsive parenting. Optimal cognitive regulation is reliant on associations between physiological mechanisms of central and peripheral nervous system functioning. Across middle adulthood there may be shifts in how cognitive regulation functions, reflecting changes in the associations and interactions between these physiological mechanisms. Two physiological indicators of cognitive regulation are autonomic regulation of the heart (e.g., respiratory sinus arrhythmia, RSA) and activity of the brain’s frontoparietal network (e.g., frontoparietal EEG alpha power coherence, FPc). In the current study we examined maternal age differences (N = 90, age M = 32.35 years, SD = 5.86 years) in correlations and interactions between RSA and FPc in the statistical prediction of cognitive regulation [i.e., executive function (EF), effortful control (EC), cognitive reappraisal (CR)]. Age-related patterns involving interaction between RSA and FPc were found, pointing to a potential shift from optimization to compensation for changes with aging or alternately, the effects of age-based decrements in functioning. Findings are discussed in the context of adult developmental changes in maternal caregiving.
Keywords