Computation (Mar 2025)
Computational Analysis of Pipe Roughness Influence on Slurry Flow Dynamics
Abstract
Slurry transportation is an essential process in numerous industrial applications, widely studied for its efficiency in material conveyance. Despite substantial research, the impact of pipe wall roughness on critical metrics such as pressure drop, specific energy consumption (SEC), and the Nusselt number remains relatively underexplored. This study provides a detailed analysis using a three-dimensional computational model of a slurry pipeline, with a 0.0549 m diameter and 3.8 m length. The model employs an Eulerian multiphase approach coupled with the RNG k-ε turbulence model, assessing slurry concentrations Cw = 40–60% (by weight). Simulations were conducted at flow velocities Vm = 1–5 m/s, with pipe roughness (Rh) ranging between 10 and 50 µm. Computational findings indicate that both pressure drop and SEC increase proportionally with roughness height, Vm, and Cw. Interestingly, the Nusselt number appears unaffected by roughness height, although it rises corresponds to Vm, and Cw. These insights offer a deeper understanding of slurry pipeline dynamics, informing strategies to enhance operational efficiency and performance across various industrial contexts.
Keywords