Radioengineering (Jun 2010)

PDF Estimation and Liquid Water Content Based Attenuation Modeling for Fog in Terrestrial FSO Links

  • S. S. Muhammad,
  • M. S. Awan,
  • A. Rehman

Journal volume & issue
Vol. 19, no. 2
pp. 228 – 236

Abstract

Read online

Terrestrial Free-space optical communication (FSO) links have yet to achieve a mass market success due to the ever elusive 99.999% availability requirement. The terrestrial FSO links are heavily affected by atmospheric fog. To design systems which can achieve high availability and reliability in the presence of fog, accurate and better models of fog attenuation need to be developed. The current article puts forth appropriate probability density function estimates for received signal strength (hereafter RSS) under fog conditions, where variations in the RSS during foggy events have been statistically characterized. Moreover, from the surface observations of fog density, liquid water content (hereafter LWC) of fog is estimated. The actual measured optical attenuations are then compared with the optical attenuations estimated from LWC. The results presented suggest that fog density measurements carried out are accurate representation of the fog intensity and the attenuation predictions obtained by the LWC estimate match the actual measured optical attenuations. This suggests that the LWC is a useful parameter besides visibility range to predict optical attenuations in the presence of hydrometeors.

Keywords