Scientific Reports (May 2018)

Mixed Bacillus Species Enhance the Innate Immune Response and Stress Tolerance in Yellow Perch Subjected to Hypoxia and Air-Exposure Stress

  • Nour Eissa,
  • Han-Ping Wang,
  • Hong Yao,
  • ElSayed Abou-ElGheit

DOI
https://doi.org/10.1038/s41598-018-25269-z
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Stress enhances the disease susceptibility in fish by altering the innate immune responses, which are essential defense mechanisms. The use of probiotics is increasingly popular in the aquaculture industry. Yellow perch is a promising candidate for aquaculture. We investigated the efficiency of a mixed Bacillus species in minimizing the potential problems resulting from husbandry practices such as hypoxia and exposure to air in yellow perch. We showed that hypoxia and air exposure conditions induced a significant reduction in the early innate immune response (lysozyme activity, interferon-induced-GTP-binding protein-Mx1 [mx], interleukin-1β [il1β], serum amyloid-A [saa]), and a substantial increase in cortisol, heat shock protein (Hsp70), glutathione peroxidase (Gpx), superoxide dismutase (Sod1) that associated with a decline in insulin-like growth factor-1 (Igf1). Mixed Bacillus species administration improved the early innate responses, reduced cortisol, Hsp70, Gpx and Sod1, and elevated Igf1 levels. Bacillus species treated group showed faster recovery to reach the baseline levels during 24 h compared to untreated group. Therefore, mixed Bacillus species may enhance yellow perch welfare by improving the stress tolerance and early innate immune response to counterbalance the various husbandry stressors. Further studies are warranted to investigate the correlations between the aquaculture practices and disease resistance in yellow perch.