Parasites & Vectors (Aug 2020)
Molecular characterization and zoonotic potential of Enterocytozoon bieneusi, Giardia duodenalis and Cryptosporidium sp. in farmed masked palm civets (Paguma larvata) in southern China
Abstract
Abstract Background Masked palm civets are known to play an important role in the transmission of some zoonotic pathogens. However, the distribution and zoonotic potential of Enterocytozoon bieneusi, Giardia duodenalis and Cryptosporidium spp. in these animals remain unclear. Methods A total of 889 fecal specimens were collected in this study from farmed masked palm civets in Hainan, Guangdong, Jiangxi and Chongqing, southern China, and analyzed for these pathogens by nested PCR and DNA sequencing. Results Altogether, 474 (53.3%), 34 (3.8%) and 1 (0.1%) specimens were positive for E. bieneusi, G. duodenalis and Cryptosporidium sp., respectively. Sequence analysis revealed the presence of 11 novel E. bieneusi genotypes named as PL1–PL11 and two known genotypes Peru8 and J, with PL1 and PL2 accounting for 90% of E. bieneusi infections. Phylogenetically, PL4, PL5, PL9, PL10 and PL11 were clustered into Group 1, while PL1, PL2, PL3, PL6, PL7 and PL8 were clustered into Group 2. Assemblage B (n = 33) and concurrence of B and D (n = 1) were identified among G. duodenalis-positive animals. Further multilocus genotyping of assemblage B has revealed that all 13 multilocus genotypes in civets formed a cluster related to those from humans. The Cryptosporidium isolate from one civet was identified to be genetically related to the Cryptosporidium bamboo rat genotype II. Conclusions To the best of our knowledge, this first report of enteric protists in farmed masked palm civets suggests that these animals might be potential reservoirs of zoonotic E. bieneusi and G. duodenalis genotypes.
Keywords